Enhanced antitumor efficacy of low-dose Etoposide with oncolytic herpes simplex virus in human glioblastoma stem cell xenografts.

نویسندگان

  • Tooba A Cheema
  • Ryuichi Kanai
  • Geon Woo Kim
  • Hiroaki Wakimoto
  • Brent Passer
  • Samuel D Rabkin
  • Robert L Martuza
چکیده

PURPOSE Glioblastoma (GBM) inevitably recurs despite surgery, radiation, and chemotherapy. A subpopulation of tumor cells, GBM stem cells (GSC), has been implicated in this recurrence. The chemotherapeutic agent etoposide is generally reserved for treating recurrent tumors; however, its effectiveness is limited due to acute and cumulative toxicities to normal tissues. We investigate a novel combinatorial approach of low-dose etoposide with an oncolytic HSV to enhance antitumor activity and limit drug toxicity. EXPERIMENTAL DESIGN In vitro, human GBM cell lines and GSCs were treated with etoposide alone, oncolytic herpes simplex virus (oHSV) G47Δ alone, or the combination. Cytotoxic interactions were analyzed using the Chou-Talalay method, and changes in caspase-dependent apoptosis and cell cycle were determined. In vivo, the most etoposide-resistant human GSC, BT74, was implanted intracranially and treated with either treatment alone or the combination. Analysis included effects on survival, therapy-associated adverse events, and histologic detection of apoptosis. RESULTS GSCs varied in their sensitivity to etoposide by over 50-fold in vitro, whereas their sensitivity to G47Δ was similar. Combining G47Δ with low-dose etoposide was moderately synergistic in GSCs and GBM cell lines. This combination did not enhance virus replication, but significantly increased apoptosis. In vivo, the combination of a single cycle of low-dose etoposide with G47Δ significantly extended survival of mice-bearing etoposide-insensitive intracranial human GSC-derived tumors. CONCLUSIONS The combination of low-dose etoposide with G47Δ increases survival of mice-bearing intracranial human GSC-derived tumors without adverse side effects. These results establish this as a promising combination strategy to treat resistant and recurrent GBM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cancer Therapy: Preclinical Enhanced Antitumor Efficacy of Low-Dose Etoposide with Oncolytic Herpes Simplex Virus in Human Glioblastoma Stem Cell Xenografts

Purpose: Glioblastoma (GBM) inevitably recurs despite surgery, radiation, and chemotherapy. A subpopulation of tumor cells, GBM stem cells (GSC), has been implicated in this recurrence. The chemotherapeutic agent etoposide is generally reserved for treating recurrent tumors; however, its effectiveness is limited due to acute and cumulative toxicities to normal tissues. We investigate a novel co...

متن کامل

Enhanced Antitumor Efficacy of an Oncolytic Herpes Simplex Virus Expressing an Endostatin–Angiostatin Fusion Gene in Human Glioblastoma Stem Cell Xenografts

Viruses have demonstrated strong potential for the therapeutic targeting of glioblastoma stem cells (GSCs). In this study, the use of a herpes simplex virus carrying endostatin-angiostatin (VAE) as a novel therapeutic targeting strategy for glioblastoma-derived cancer stem cells was investigated. We isolated six stable GSC-enriched cultures from 36 human glioblastoma specimens and selected one ...

متن کامل

Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy

Oncolytic viruses (OV) are a class of antitumor agents that selectively kill tumor cells while sparing normal cells. Oncolytic herpes simplex virus (oHSV) has been investigated in clinical trials for patients with the malignant brain tumor glioblastoma for more than a decade. These clinical studies have shown the safety of oHSV administration to the human brain, however, therapeutic efficacy of...

متن کامل

Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9

Objective(s): Oncolytic Herpes simplex virus type 1 (HSV-1) has emerged as a promising strategy for cancer therapy. However, development of novel oncolytic mutants has remained a major challenge owing to low efficiency of conventional genome editing methods. Recently, CRISPR-Cas9 has revolutionized genome editing.Materials and Methods: I...

متن کامل

Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma.

Short-term nutritional restriction (fasting) has been shown to enhance the efficacy of chemotherapy by sensitizing cancer cells and protecting normal cells in a variety of cancer models, including glioblastoma (GBM). Cancer cells, unlike normal cells, respond to fasting by promoting oncogenic signaling and protein synthesis. We hypothesized that fasting would increase the replication of oncolyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 17 23  شماره 

صفحات  -

تاریخ انتشار 2011